
The EdSim51 Beginner’s Guide to the 8051

 1

5 The Program Status Word
Every microcontroller contains flags that may be used for testing the outcome of an instruction's execution. For example,
the carry flag may be used to test the outcome of an 8-bit addition to see if the result is greater than 255.

Some microcontrollers use a special bit to indicate whether the contents of the accumulator is zero or not (the PIC
microcontroller, for example). This flag is usually called the zero or Z flag and conditional jump† instructions that test its
value can be used to branch (jump to another location in code memory) if the accumulator is zero or if the accumulator is
not zero (if Z is set, the accumulator contains zero, if Z is clear the accumulator contains a number other than zero).

The 8051 does not have such a bit. To test the status of the accumulator the instructions JZ rel (jump if (A) = 0)
and JNZ rel (jump if (A) <> 0) are used.

However, the 8051 contains a number of flags, in the special function register called the Program Status Word (PSW).
These flags can be tested by conditional jumps. Before we go into the functions of these flags, it would first be useful to
understand how positive and negative numbers are stored in binary.

Signed Numbers
Memory locations and registers in the 8051 are, for the most part, eight bits wide. With eight bits, there are 256
combinations (28), as listed (partially) below.

0000 0000
0000 0001
0000 0010
0000 0011

...
1111 1101
1111 1110
1111 1111

If this list of binary numbers represents positive decimal numbers, then the range is 0 to 255,
which of course is 256 different numbers.

However, this same list can also represent both positive and negative numbers, the range being
–128 to 127.

Note that this still consists of 256 combinations: –1 to –128 make 128 numbers and 0 to 127
make another 128 numbers.

Let’s see how negative numbers are stored.

† Unconditional jumps result in program execution resuming at a different location in memory. Conditional jumps test
some condition, then jump if the condition is true, or continue with the next instruction if it is false. We will deal with these
in more detail in the next chapter.

The EdSim51 Beginner’s Guide to the 8051

 2

One's Compliment
To get the one's compliment of a number, each bit is
inverted. Three examples are given in the table opposite:

8-bit Number One's Compliment
1101 0001 0010 1110
1111 1111 0000 0000
0100 0110 1011 1001

Two's Compliment
To get the two's compliment of a number, one is added to
the one's compliment. The three examples from the table
above are converted into two's compliment here.

8-bit Number Two's Compliment
1101 0001 0010 1111
1111 1111 0000 0001
0100 0110 1011 1010

To change the two's compliment of a number back to its original value, simply get the two's compliment again. Try it
with the examples above.

The Sign Bit
A signed number is a number which can be either positive or negative while an unsigned number can only be positive.
With signed numbers, the MSB (most significant bit – in this case, bit 7) is used to determine whether or not the number
is positive or negative. If the MSB is zero then the number is positive while if the MSB is one the number is negative.

Therefore, a positive number is stored unchanged. For example, the signed number 86 (in decimal) is stored the same as
the unsigned equivalent (0101 0110 is binary for 86).

However, a negative number is stored as the two's compliment of its absolute value. For example, –86 is stored as the
two's compliment of 86 (1010 1010 is the 2's compliment of 0101 0110).

Converting Signed Binary Numbers to Decimal
Since an MSB of zero means a positive number and an MSB of one means a negative number, you may be thinking it is
necessary for the system to test the MSB in order to determine the sign of a number. This is not so. Converting signed
numbers from binary to decimal is exactly the same as converting unsigned numbers from binary to decimal, except for
one small difference – the MSB is negative.

For example, let’s take the binary number 1101 1100.

If this is an unsigned number, then converting it to
decimal gives:

However, if it is a signed number, the conversion is the
same, except that the MSB is negative.

27 26 25 24 23 22 21 20

1 1 0 1 1 1 0 0
128 64 0 16 8 4 0 0

Adding the values in the bottom row gives 220.

-27 26 25 24 23 22 21 20

1 1 0 1 1 1 0 0
-128 64 0 16 8 4 0 0

Adding the values in the bottom row gives –36.

The EdSim51 Beginner’s Guide to the 8051

The PSW
Now we will investigate the function of the PSW flags, starting with one of the most commonly used flags, the carry.

Bit Symbol Address Description
PSW.7 CY D7 Carry Flag
PSW.6 AC D6 Auxiliary Carry Flag
PSW.5 F0 D5 Flag 0
PSW.4 RS1 D4 Register Bank Select 1
PSW.3 RS0 D3 Register Bank Select 0
PSW.2 OV D2 Overflow Flag
PSW.1 -- D1 Reserved
PSW.0 P D0 Even Parity Flag

The Program Status Word (PSW)

Carry Flag
The carry flag has two functions.

1. Firstly, it is used as the carry-out in 8-bit

addition/subtraction. For example, if the accumulator
contains FDH and we add five to its contents, it will
then contain two and the carry flag will be set. It is
also set if a subtraction causes a borrow into bit 7. In
other words, if a number is subtracted from a number
smaller than it, the carry flag will be set. For
example, if A contains 3DH and R3 contains 4BH,
the instruction SUBB A, R3 will result in the carry
bit being set (4BH is greater than 3DH).

2. The carry flag is also used during Boolean operations. For example, we could AND the contents of bit 73H with the
carry flag, the result being placed in the carry flag – ANL C, 73H (the bit at address 73H is logically anded with
the carry, the result placed in the carry).

Below are screenshots of the EdSim51 simulator, illustrating these two examples of the carry in action.

<- The contents of ACC is FDH (253
in decimal), and the carry (bit 7 of the
PSW) is zero, prior to execution of the
instruction that adds five to the
accumulator.

After adding five, ACC contains two
and the carry bit is set, indicating the
result of the addition (253 + 5) is
greater than 255.

->

<- In this example, the carry is one and
bit 73H is zero (if you look at the
memory map, you will see bit 73H is bit
3 of byte location 2EH, as highlighted
opposite.

After anding the carry with bit 73H, it
can be seen that the result (anding one
with zero results in zero) is placed in
the carry.

->

 3

The EdSim51 Beginner’s Guide to the 8051

Parity Bit
The parity bit is automatically set or cleared every machine cycle‡ to ensure even parity with the accumulator. The
number of ones in the accumulator plus the parity bit is always even. In other words, if the number of ones in the
accumulator is odd then the parity bit is set to make the overall number of bits even. If the number of ones in the
accumulator is even then the parity bit is cleared to make the overall number of bits even.

<- For example, if the accumulator holds
the number five (see opposite), then it has
an even number of ones. Therefore the
parity bit is cleared.

If the accumulator holds the number F2H,
it has an odd number of ones. Therefore
the parity bit is set to make the overall
number of ones even.

->
As we shall see later in this book, the parity bit is most often used for detecting errors in transmitted data.

Overflow Flag
The overflow flag is bit 2 of the PSW. This flag is set after an addition or subtraction operation if the result in the
accumulator is outside the signed 8-bit range (–128 to 127). In other words, if the addition or subtraction of two numbers
results in a number less than –128 or greater than 127, the OV flag is set.

When signed numbers are added
or subtracted, software can
check this flag to see if the
result is in the range –128 to
127. For example: 115 + 23 =
138 (73H + 17H = 8AH). If
these numbers are being treated
as signed numbers then 8AH is
(as a signed number) –118 in
decimal. Obviously, 115 + 23 is
not equal to –118. The problem
lies with the fact that the correct
answer (138) is too big to be
represented by an 8-bit signed
number. Therefore, the OV flag
is set to alert the program that
the result is out of range.

‡ The 8051 (like all microcontrollers), carries out a number of operations, such as reading from ROM and updating the
parity bit, during what is known as the machine cycle. Most one-byte instructions take one machine cycle to execute,
whereas two-byte instructions take two machine cycles, as ROM needs to be accessed twice.

 4

The EdSim51 Beginner’s Guide to the 8051

You may wonder what happens if the sum of two numbers is outside the range of an unsigned number. For example: 200
+ 60 = 260. The result is a 9-bit number and the carry flag is set. However, the result is also greater than 127 (the 8-bit
signed number maximum) so you might expect the OV flag to be set also. But, if you test this in the EdSim51 simulator
you will notice OV is not set. Why?

The answer is quite simple: the
sum in HEX is: C8H + 3CH.
Regardless of whether we are
dealing with signed or unsigned
numbers, 3CH is equal to 60 in
decimal. However, C8H as an
unsigned number is 200 in
decimal, but as a signed number
it’s –56 in decimal. When
deciding the value of the OV
flag, only the case of signed
numbers is taken into account.
So, this equates to –56 + 60 = 4.

If you run this code in the simulator you will see that the accumulator contains 4, the carry is set to indicate that, if this is
unsigned arithmetic, the answer is greater than 255, but OV is clear because if this is signed arithmetic the answer is in
the range –128 to 127.

Auxiliary Carry Flag (AC)
The auxiliary carry flag is set or cleared after an add instruction (ADD A, operand or ADDC A, operand) only.
The condition that results in AC being set is:

If a carry was generated out of bit 3 into bit 4 of the accumulator.
For example, 8 + 9 = 17. In binary, this is 0000 1000 + 0000 1001 = 0001 0001. Notice that, in both numbers, bit 3 is
one. Therefore, adding them together results in a carry of one into bit 4.

To understand the purpose of this flag, we first need to look at binary coded decimal (BCD) and why it is useful.

0000 0000 0
0000 0001 1
0000 0010 2
0000 0011 3
0000 0100 4
0000 0101 5
0000 0110 6
0000 0111 7
0000 1000 8
0000 1001 9

0001 0000 10
0001 0001 11
0001 0010 12
...
0001 1001 19
0010 0000 20
0010 0001 21
0010 0010 22
... and so on

In 8-bit BCD, the byte is split into two 4-bit nibbles. Each nibble
has a range of zero to nine. This can be useful is we wish to output
the BCD number to a display. For example, the number 21 in
decimal is 15 in HEX. If we were to output this to a display, where
the lower nibble represents the units and the upper nibble
represents the tens, the number 15 would appear on the display,
instead of the actual number 21. We could use the DA A (decimal
adjust A) instruction that would change the value in the
accumulator from 15H to 21H. Then, if this was output to the
display, the upper nibble would display a two, while the lower
nibble would display a one – the number 21 is displayed.

The AC flag may be tested after an addition to see if there was a carry from the lower nibble to the higher nibble. If so,

 5

The EdSim51 Beginner’s Guide to the 8051

this means the BCD addition resulted in an overflow, and the instruction DA A can be used to change the HEX code in A
back to BCD.

For example, if we add 9 to 8 in the accumulator, as shown below:

The above code adds 8 to 9, leaving 17 (11H) in the accumulator. As explained on the previous page, this means there
was a carry from the lower nibble to the higher nibble. Therefore AC will be set and the following instruction (DA A)
will change A from 11H to 17H.

Register Bank Select Bits
Bits 3 and 4 of the PSW are used for selecting the register bank. Since there are four register banks, two bits are required
for selecting a bank, as detailed below.

PSW.4 (RS1) PSW.3 (RS0) Register Bank Address of Register Bank
0 0 0 00H to 07H
0 1 1 08H to 0FH
1 0 2 10H to 17H
1 1 3 18H to 1FH

For example, if we wished to activate register bank 3, we would use the following instructions:

SETB RS1 ; set register select bit 1
SETB RS0 ; set register select bit 0

If we then moved the contents of R4 to the accumulator (MOV A, R4) we would be moving the data from location 1CH
to accumulator. However, the beginning programmer seldom, if ever, bothers with moving the register bank.

 6

The EdSim51 Beginner’s Guide to the 8051

 7

This is one sample chapter from the soon to be published EdSim51’s Beginner’s Guide to the 8051 by James Rogers. The
book is expected to be available by early March, 2009. Check www.edsim51.com for latest news.

This document is copyright © 2009 James Rogers

